
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

The torque exerted on a surface-stabilised ferroelectric liquid crystal cell in
an electric field
Erfan Kadivara; Khosrow Rahimib; Mohammad Ali Shahzamanianb

a Department of Physics, Faculty of Sciences, Persian Gulf University, 75168 Bushehr, Iran b

Department of Physics, Faculty of Sciences, University of Isfahan, 81744 Isfahan, Iran

To cite this Article Kadivar, Erfan , Rahimi, Khosrow and Ali Shahzamanian, Mohammad(2008) 'The torque exerted on a
surface-stabilised ferroelectric liquid crystal cell in an electric field', Liquid Crystals, 35: 7, 815 — 821
To link to this Article: DOI: 10.1080/02678290802195705
URL: http://dx.doi.org/10.1080/02678290802195705

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678290802195705
http://www.informaworld.com/terms-and-conditions-of-access.pdf


The torque exerted on a surface-stabilised ferroelectric liquid crystal cell in an electric field
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aDepartment of Physics, Faculty of Sciences, Persian Gulf University, 75168 Bushehr, Iran; bDepartment of Physics, Faculty of

Sciences, University of Isfahan, 81744 Isfahan, Iran

(Received 30 October 2007; final form 12 May 2008)

The hydrodynamic equations for surface-stabilised ferroelectric liquid crystal cells in the presence of an electric
field are calculated. The components of velocity are obtained. Then the torque exerted on the torsional oscillator
in which the cell is contained is obtained. We also determine the changes in the resonant frequency as a function
of the electric field.
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1. Introduction

Smectic liquid crystals are systems which are posi-

tionally disordered but reveal a long-range orienta-

tional order. This property is described on a

mesoscopic level by a unit vector field bnn rð Þ, which is

called the director. The experimentally observed

rotation of smectic liquid crystal layers, under the

action of external electric fields, has attracted a

significant amount of interest. This unusual effect is

observed only in chiral smectic phases and is believed

to be rotated by the electroclinic effect (1, 2).

To the best of the authors’ knowledge, there have

been only a few papers published on the dynamics of

Sm–C* liquid crystals. Particle dispersion in liquid

crystals has been studied. The interactions between

liquid crystals and particle dispersions were investi-

gated in (3). Recently, the manipulation of colloidal

particles was studied in (4). The backflows in the

Goldstone mode dielectric response of chiral Sm–C*

has been studied by Carlsson (5). A Fredericks

transition due to the presence of the spontaneous

polarisation in Sm–C* has been predicted by

Zimmermann et al. (6). The possibility of inducing

a Fredericks transition in a wedge stability has been

discussed by Carlsson et al. (7). Zou et al. have

derived the flow-coupled switching equations for

surface-stabilised ferroelectric liquid crystal cell

(SSFLC) devices (8). Here, the dynamic equations

of SSFLCs are calculated and then the components

of velocity are derived. Finally, the torque exerted on

the cell in the presence of an electric field is

computed.

The aim of our paper is to present the calculation

of the torque exerted on a SSFLC in an electric field.

The outline of the paper is as follows. In section 2, we

obtain the total free energy and then discuss the

threshold field in which the Fredericks transition will

occur. In section 3, we calculate the dynamic

equations and obtain the components of velocity.

Finally, in section 4, we compute the torque exerted

on the cell.

2. Euler equations and the Fredericks transition

Consider a slab of ferroelectric liquid crystal (Sm–C*)

inside a torsional oscillator, of width d, placed

in an electric field E. We assume that the orbital

texture is not affected by the flow associated with

the motion of the torsional oscillator. In this work,

we assume that the smectic layers consist of uniform

planes with a fixed orientation parallel to the x–y

plane (see Figure 1). We call a unit vector a normal

to the smectic layer. Each layer is normal to the

slab surfaces, thus a is parallel to the z-axis, (see

Figure 1). We assume that the system studied is

free from dislocation of constant layer thickness;

hence, the layer normal a must fulfill the constraint

(9, 10):

+|a~0: ð1Þ

The director field, n, makes an angle h with the

z-axis. The projection of the director field into

the smectic planes (x–y plane) is called a unit vector

c (c-director). In order to describe the orientation

of the c-director, we introduce azimuthal angle, w,

which is the angle between the c-director and the

x-axis:

c~ cos w, sin w, 0ð Þ: ð2Þ
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Introducing a unit vector b according to

b~a|c, ð3Þ

this unit vector will coincide with the polarisation

vector (P5Pb). Without applying an external field, the

ground state has a homogeneous structure. At any

given field, E5–Ej, the stable equilibrium state can be

found by minimising the total free energy with respect

to variations in the c-director. In the one constant

approximation, and neglecting the dielectric coupling,

the total density of free energy is written as (5, 12)

f ~
B

2

Lw

Ly

� �2

zPE cos w: ð4Þ

The first term comes from the Frank free energy,

whereas the last term comes from the electric field; B is

the elastic constant and P is spontaneous electric

polarisation, which lies in the smectic planes perpen-

dicular to a and c.

At E5Ec the Fredericks transition will be induced

by forcing the polarisation to point downwards

everywhere except at the boundaries of the cell

(because of strong anchoring at the bounding plates).

The value of w(y) at the critical field can be found

by minimising the total free energy. By using the

Euler–Lagrange equation and small values of w(y),

we have

dy

dw

� �2

~
B

PE

� �

1

w2
m{w2

: ð5Þ

The solution to (5) is

w yð Þ~wm cos
p

d
y

� �

, ð6Þ

where wm is determined variationally.

Now, we calculate the threshold field from (5). By

performing the integrals of (5), from w5wm to w50

and y50 to y5d/2, the threshold field is given as

Ec~
p

d

ffiffiffiffi

B

P

r

: ð7Þ

Figure 1. The bookshelf geometry of a SSFLC cell.
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To calculate wm, we first calculate the total free

energy of the cell

F~
Bp2

d

E

Ec

w4
m

64
z

w2
m

4

Ec

E
{1

� �

z1

( )

: ð8Þ

The value of wm can be found by minimising the total

free energy with respect to the amplitude wm for a

fixed value of applied electric field E. This gives

wm~0, ð9Þ

or

wm~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 1{
Ec

E

� �

s

, ð10Þ

where the solution wm50 is for E,Ec. It is obvious

that in this case, we do not have any texture in the

system.

3. The hydrodynamics equations of a narrow slab of

Sm–C* liquid crystal in a torsional oscillator

We now proceed by writing down the equations

governing the hydrodynamic behavior of the Sm–C*

phase. The basic mathematical formulation of these

equations has been derived by Leslie, Stewart and

Nakagawa (LSN) (9), and has been interpreted

further and reformulated by Zou et al. (8). The

LSN theory has 13 unknowns and, with 13 coupled

partial differential equations, is a complex system of

equations to solve without simplification. We use

some approximations which are explained in the

following.

We assume that the total density of fluid remains

constant during the oscillator motion. Then con-

servation of linear momentum requires that (12)

r
:
vi ~Fi{

Lp

Lxi

z
Lettij

Lxj

, ð11Þ

where r is the density of liquid crystal, Fi the sum of

external forces, p is the usual pressure and ettij is the

viscous part of stress tensor. We restrict our attention

to small tile angle h. Thus, the dynamics equation

that arise from the angular momentum balance are

self-satisfied. The viscous part of the stress tensor, ettij ,

is most conveniently expressed as the sum of its

symmetrical, etts
ij , and antisymmetrical, etta

ij, parts

ettij ~ett
s

ij zett
a

ij : ð12Þ

By introducing the following quantities

Dij~
1

2

Lvi

Lxj

z
Lvj

Lxi

� �

, Wij~
1

2

Lvi

Lxj

{
Lvj

Lxi

� �

,

Da
i ~Dijaj, Dc

i ~Dijcj,

Ai~
:
ai {Wikak, Ci~

:
ci {Wikck,

ð13Þ

we can write the viscous stress tensors as (9),

ett
s

ij ~m0Dijzm1apDa
paiajzm2 Da

i ajzDa
j ai

� �

zm3cpDc
pcicjzm4 Dc

i cjzDc
j ci

� �

zm5cpDa
p aicjzajci

� �

zl1 AiajzAjai

� �

zl2 CicjzCjci

� �

zl3cpAp aicjzajci

� �

zk1 Da
i cjzDa

j cizDc
i ajzDc

j ai

� �

zk2 apDa
p aicjzajci

� �

z2apDc
paiaj

h i

zk3 cpDc
p aicjzajci

� �

z2apDc
pcicj

h i

zt1 CiajzCjai

� �

zt2 AicjzAjci

� �

z2t3cpApaiajz2t4cpApcicj ,

ð14Þ

and

ett
a

ij ~l1 Da
j ai{Da

i aj

� �

zl2 Dc
j ci{Dc

i cj

� �

zl3cpDa
p aicj{ajci

� �

zl4 Ajai{Aiaj

� �

zl5 Cjci{Cicj

� �

zl6cpAp aicj{ajci

� �

zt1 Da
j ci{Da

i cj

� �

zt2 Dc
j ai{Dc

i aj

� �

zt3apDa
p aicj{ajci

� �

zt4cpDc
p aicj{ajci

� �

zt5 Ajci{AicjzCjai{Ciaj

� �

,

ð15Þ

where the 20 coefficients mi, li, ki, ti in the above

equations are the viscosity coefficients of the liquid

crystal. These coefficients can be classified as

belonging to one of four groups. The m0 term relates

to isotropic part of stress tensor. The four terms

connected to the constant m1, m2, l1 and l4 are present

in the Sm–A* phase. The four terms involving the

coefficients l2, l5, m3 and m4 relate to the nematic-like

phase. Finally, there are 11 terms associated with the

coefficients l3, l6, m5, k1, k2, k3, t1, t2, t3, t4 and t5.

These coefficients depend on the tilt angle h. Keeping

the layer normal a unchanged and at the same time

changing the tilt angle h to –h and c to –c provides a

symmetric operation of the system. As a conse-

quence, the stress tensor must be invariant under this

operation. Thus, we should just keep mi and li

coefficients to retain the above symmetry operation

Liquid Crystals 817
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in the system. It should be noted that the above

symmetry conditions reduce the theory to that of

materials having the symmetry of the classical smectic

CM phase which was proposed and introduced by

McMillan (11).

We now proceed to solve the hydrodynamic

equation of a narrow slab of Sm–C* in a torsional

oscillator with small oscillation amplitudes to obtain

the space and time dependence of the velocity field.

When studying the flow properties of the system, the

liquid crystal is considered to be incompressible and

the velocity field v is subjected to the constraint (10)

+:v~0: ð16Þ

The pressure, p, would be dependent on all x, y, z and

w. However, when the cell is not sealed, then the

pressure will be released before it builds up. Therefore,

it is a good approximation to assume that p is y

dependent for an open edge cell. Thus p only shows

up on the y component of (11). As we mentioned

previously, the oscillation amplitudes are assumed to

be small. On the other hand, we neglect the possibility

of transportation of material between the smectic

layers, a.v50; thus, the velocity field is parallel to the

smectic layers everywhere, that is, vz50, so we assume

that the velocity field has the following form (14)

v~ vx y, zð Þizvy x, zð Þj
� 	

eiv0t, ð17Þ

where v0 is the oscillation frequency of the cell.

By using (17) in (13), the non-zero components of

the quantities are given as follows

Dyx~Dxy~
1

2

Lvx

Ly
z

Lvy

Lx


 �

, Dzx~Dxz~
1

2

Lvx

Lz


 �

,

Dyz~Dzy~
1

2

Lvy

Lz


 �

, Wxy~{Wyx~
1

2

Lvx

Ly
{

Lvy

Lx


 �

,

Wxz~{Wzx~
1

2

Lvx

Lz


 �

, Wyz~{Wzy~
1

2

Lvy

Lz


 �

,

Da
x~

1

2

Lvx

Lz


 �

, Da
y~

1

2

Lvy

Lz


 �

,

Dc
x~

1

2

Lvx

Ly
z

Lvy

Lx


 �

sin w, Dc
y~

1

2

Lvx

Ly
z

Lvy

Lx


 �

cos w,

Dc
z~

1

2

Lvx

Lz
cos wz

1

2

Lvy

Lz
sin w, Ax~{

1

2

Lvx

Lz
,

Ay~{
1

2

Lvy

Lz
, Cx~{

1

2

Lvx

Ly
{

Lvy

Lx


 �

sin w{vy sin w
Lw

Ly
,

Cy~
1

2

Lvx

Ly
{

Lvy

Lx


 �

cos wzvy cos w
Lw

Ly
,

Cz~z
1

2

Lvx

Lz
cos wz

1

2

Lvy

Lz
sin w:

ð18Þ

By inserting (14), (15), (17), and (18) into (11) we

obtain the following equations for the small angle

w(y)

riv0vxzrvy

Lvx

Ly
~a1

L2vy

Lx2
w yð Þza2

L2vx

Ly2

za3vy

d2w

dy2
za4

L2vy

Lz2
wza5

L2vx

Lz2
,

ð19Þ

riv0vyzrvx

Lvy

Lx
~{

dp yð Þ
dy

za6
L2vy

Lx2
za7

Lvy

Lx

dw yð Þ
dy

za8
L2vy

Lz2
za9

L2vx

Lz2
w yð Þ

za10
L2vx

Ly2
w yð Þz Lvx

Ly

dw yð Þ
dy

 !

,

ð20Þ

and

0~
L2vy

LxLz
w yð Þz L2vx

LyLz
w yð Þz Lvx

Lz

dw yð Þ
dy

, ð21Þ

where the constants ai are defined in Appendix A.

These are the hydrodynamic motion equations of the

system.

As we mentioned previously, we are considering

the state of the smectic liquid crystal in a torsional

oscillator which is slightly deformed. On the basis of

this assumption and the symmetry of the problem, it

is possible to use the following approximation for the

velocity components and pressure

vx y, zð Þ~
X
?

n~0

Ln yð ÞMn zð Þwn
m, ð22Þ

vy x, zð Þ~
X
?

n~0

Fn xð ÞGn zð Þwn
m, ð23Þ

vz~0, ð24Þ

p yð Þ~
X
?

n~0

pn yð Þwn
m: ð25Þ

By inserting above equations into (19), (20), and (21),

818 E. Kadivar et al.
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we have

riv0

X
?

n~0

Ln yð ÞMn zð Þwn
m

zr
X
?

n~0

Fn xð ÞGn zð Þwn
m

X
?

k~0

dLk yð Þ
dy

Mk zð Þwk
m

~a1w yð Þ
X
?

n~0

d2Fn xð Þ
dx2

Gn zð Þwn
m

za2

X
?

n~0

d2Ln yð Þ
dy2

Mn zð Þwn
m

za3

X
?

n~0

Fn xð ÞGn zð Þ d
2w yð Þ
dy2

wn
m

za4w yð Þ
X
?

n~0

Fn xð Þ d
2Gn zð Þ
dz2

wn
m

za5

X
?

n~0

Ln yð Þ d
2Mn zð Þ

dz2
wn

m,

ð26Þ

riv0

X
?

n~0

Fn xð ÞGn zð Þwn
m

zr
X
?

n~0

Ln yð ÞMn zð Þwn
m

X
?

k~0

dFk xð Þ
dx

Gn zð Þwk
m

~{
X
?

n~0

dpn yð Þ
dy

wn
mza6

X
?

n~0

d2Fn xð Þ
dx2

Gn zð Þwn
m

za7
dw

dy

X
?

n~0

dFn xð Þ
dx

Gn zð Þwn
m

za8

X
?

n~0

Fn xð Þ d
2Gn zð Þ
dz2

wn
m

za9w yð Þ
X
?

n~0

Ln yð Þ d
2Mn zð Þ

dz2
wn

m

za10w yð Þ
X
?

n~0

d2Ln yð Þ
dy2

Mn zð Þwn
m

za10
dw

dy

X
?

n~0

dLn yð Þ
dy

Mn zð Þwn
m,

ð27Þ

and

w yð Þ
X
?

n~0

dFn xð Þ
dx

dGn zð Þ
dz

wn
m

zw yð Þ
X
?

n~0

dLn yð Þ
dy

dMn zð Þ
dz

wn
m

z
dw yð Þ

dy

X
?

n~0

Ln yð Þ dMn zð Þ
dz

wn
m~0:

ð28Þ

The zero order terms of (26), (27), and (28) gives

riv0L0 yð ÞM0 zð ÞzrF0 xð ÞG0 zð Þ dL0 yð Þ
dy

M0 zð Þ

~a2
d2L0 yð Þ

dy2
M0 zð Þza5L0 yð Þ d

2M0 zð Þ
dz2

,

ð29Þ

riv0F0 xð ÞG0 zð ÞzrL0 yð ÞM0 zð Þ dF0 xð Þ
dx

G0 zð Þ

~{
dp0 yð Þ

dy
za6

d2F0 xð Þ
dx2

G0 zð Þza8F0 xð Þ d
2G0 zð Þ
dz2

:

ð30Þ

It is clear that (28) does not have zero-order terms.

Owing to vanishing vz, the boundary condition in

torsional oscillator at y5¡d/2 is defined as

v~vzbii, ð31Þ

where v is an angular velocity of the liquid crystal in

the surfaces of the cell.

The right-hand side of (29) is a function of

variables y and z, whereas the left-hand side of it is a

function of all three variables x, y, and z. To

overcome this difficulty one assumes F0(x)G0(z)5

c05constant. By applying the boundary condition

(31) on c0 we find that c0 is zero. Thus, the zero-order

pressure is constant and the zero-order velocity is

along the x-axis:

F0 xð ÞG0 zð Þ~0: ð32Þ

By substituting (32) into (29), we may write

a2
1

L0

d2L0 yð Þ
dy2

za5
1

M0 zð Þ
d2M0 zð Þ

dz2
~riv0: ð33Þ

By using the boundary condition on M0(z)

(M0(z)5z), we have

v0x y, zð Þ~L0 yð ÞM0 zð Þ~ zv

cosh cd=2ð Þ cosh cyð Þ, ð34Þ

where c25riv0/a2.

The first-order terms of (26) and (27) give

riv0L1 yð ÞM1 zð Þ

zrF1 xð ÞG1 zð Þ zvc

cosh cd=2ð Þ sinh cyð Þ

~a2
d2L1 yð Þ

dy2
M1 zð Þza5L1 yð Þ d

2M1 zð Þ
dz2

,

ð35Þ
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and

riv0F1 xð ÞG1 zð Þzr
zv

cosh cd=2ð Þ cosh cyð Þ dF1 xð Þ
dx

G1 zð Þ

~{
dp1 yð Þ

dy
za6

d2F1 xð Þ
dx2

G1 zð Þ

za8F1 xð Þ d
2G1 zð Þ
dz2

za10
zvc2

cosh cd=2ð Þ cosh cyð Þcos
p

d
y

� �




{
zvcp

dcosh cd=2ð Þ sinh cyð Þsin
p

d
y

� �

�

,

ð36Þ

respectively, it is noted that the average of the fourth

and fifth terms of the right-hand side of (36) are zero,

that is,

a10zvc

d cosh cd=2ð Þ

ðd=2

{d=2

c cosh cyð Þcos
p

d
y

� �h

{
p

d
sinh cyð Þsin

p

d
y

� �i

dy~0:

ð37Þ

The left-hand side of (36) is a function of all three

variables x, y, and z, whereas the right-hand side is

the function of variables x and z. To overcome this

difficulty, one may assume F1(x)G1(z)5c15constant.

By using the boundary condition, we find that the

velocity is along the x-axis. Thus, we have

F1 xð ÞG1 zð Þ~0, ð38Þ

and the first-order pressure is constant. By substitut-

ing (38) into (35), we may write

a2
1

L1

d2L1 yð Þ
dy2

za5
1

M1 zð Þ
d2M1 zð Þ

dz2
~riv0: ð39Þ

By using the boundary condition on M1(z),

(M1(z)5z), we have

v1x y, zð Þ~L1 yð ÞM1 zð Þ~ zv

cosh cd=2ð Þ cosh cyð Þ: ð40Þ

Finally, by continuing this procedure, the velocity

field components may be written as

vx y, zð Þ~
X
?

n~0

zv

cosh cd=2ð Þ cosh cyð Þwn
m, ð41Þ

vy x, zð Þ~0: ð42Þ

4. Calculation of the torque exerted on the slab and

resonance frequency

The torque exerted by the fluid on the oscillator is

defined by

Cy~r
d

dt

ð

zvx{xvzð Þ dV : ð43Þ

Furthermore, we define DCy5Cy(w)2Cy(0), which is

the variation in the exerted torque due to the

appearance of the texture. In the case of E,Ec, we

do not have any texture; hence, DCy50.

By inserting (40) into (43) and after straightfor-

ward calculations we have

DCy~
rR4p

2c

dv

dt
tanh

cd

2

� �

X
?

n~0

wn
m, ð44Þ

where R is the radius of the oscillating slab. We also

write DCy in terms of dimensionless quantities Df1

and Df2 as (14)

DCy~
rR4p

2c

dv

dt
tanh

cd

2

� �

Df1ziDf2ð Þ, ð45Þ

where Df1 and Df2 are related to the inertial and

dissipative effects, respectively. Here, we calculated

Df1 and Df2 for the case in which cd is much smaller

than one. The amplitude of wm is very small, hence

DCy%
rR4pd

4

dv

dt
wm: ð46Þ

As is obvious, Df250 for this case and

Df1%wm~2
ffiffiffi

2
p

1{
Ec

E

� �1=2

: ð47Þ

The motion equation of the oscillator is described by

(15)

I
::
qz nz

1

2
ivprR4d Df1ziDf2ð Þ


 �

:
qzcq~C0eivt, ð48Þ

where I is the moment of inertia of the empty

oscillator, c is the torsion constant, and n represents

damping from non-hydrodynamic sources. If the

change in resonant frequency, due to the fluid, is

small and if the quality factor of the oscillator is high,

it follows from (48) that the resonant frequency nR is
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given by (15)

nR{n0~{
pn0rR4dDf1

4I
, ð49Þ

where

n0~
1

2p

c

I

� �1=2

is the resonant frequency of the empty cell. As is
obvious, the resonant frequency of the torsional

oscillator is proportional to wm, which is given in (6).

The torsional oscillator is another probe for detecting

the occurrence of the Fredericks transition in ferro-

electric liquid crystals.

The hydrodynamic equations of a thin cell of Sm–

C* in the presence of electric field have been solved.

The components of the velocity field have also been
obtained in (41) and (42). In our previous work (16),

we calculated the hydrodynamic equation of nematic

liquid crystals in a magnetic field, H. In that work, we

obtained the resonant frequency that was propor-

tional to w2
m, whereas here we have obtained the

resonant frequency proportional to wm. This differ-

ence comes from the fact that in nematic liquid

crystals the free energy is proportional to bnn:Hð Þ2,
while in ferroelectric liquid crystals the free energy is

proportional to P?E.
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Appendix A

In this appendix we introduce the 10 coefficients ai as

follows:

a1~
1

2
m3zm4zl2½ �, ðA1Þ

a2~
1

2
m0zm4z2l2zl5½ �, ðA2Þ

a3~
1

2
l2zl5½ �, ðA3Þ

a4~
1

2
m0zm5z2l2{l3zl5zl6½ �, ðA4Þ

a5~
1

2
m0zm2zm4zm5{2l1½

z2l2{2l3zl4zl5zl6�,
ðA5Þ

a6~
1

2
m0zm4{2l2zl5½ �, ðA6Þ

a7~ l2{l5½ �, ðA7Þ

a8~ m0{l1½ �, ðA8Þ

a9~
1

2
m4zm5z2l2{2l3zl5zl6½ �, ðA9Þ

a10~ m4{l2½ �: ðA10Þ

Some of these coefficients has been introduced before

(17); for example, measurements for l5 are available

and so are combinations (18). They are compared

with data results in (19).
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